From focussed proof systems to complexity bounds

نویسنده

  • Anupam Das
چکیده

We conduct a complexity-theoretic study of focussed proof systems, relating the alternation of synchronous and asynchronous phases in a proof to an appropriate alternating time hierarchy, for instance the polynomial hierarchy. We propose a notion of ‘over-focussing’ that admits non-branching invertible rules during synchronous phases, due to the fact that deterministic computations can equally be carried out by a nondeterministic machine. As an application, we develop an over-focussed system for a fragment of intuitionistic propositional logic which we show to be already PSPACE-complete by a refinement of Statman’s translation from true QBFs. We show that this translation has a well-behaved inverse, preserving quantifier complexity, in the form of a QBF encoding of proof search for the over-focussed system, demonstrating the usefulness of considering such systems. Consequently we are able to delineate intuitionistic tautologies according to the polynomial hierarchy and derive further proof-theoretic consequences for intuitionistic logic.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Proof Complexity of Resolution-based QBF Calculi

Proof systems for quantified Boolean formulas (QBFs) provide a theoretical underpinning for the performance of important QBF solvers. However, the proof complexity of these proof systems is currently not well understood and in particular lower bound techniques are missing. In this paper we exhibit a new and elegant proof technique for showing lower bounds in QBF proof systems based on strategy ...

متن کامل

Generating Matrix Identities and Proof Complexity

Motivated by the fundamental lower bounds questions in proof complexity, we initiate the study of matrix identities as hard instances for strong proof systems. A matrix identity of d × d matrices over a field F, is a non-commutative polynomial f(x1, . . . , xn) over F such that f vanishes on every d × d matrix assignment to its variables. We focus on arithmetic proofs, which are proofs of polyn...

متن کامل

Feasible interpolation for lifted sequents

The idea of feasible interpolation for propositional proof systems is to derive lower bounds for propositional proofs using circuit lower bounds for Craig’s interpolant. However, as far as we know, proof systems such as constant-depth Frege do not admit feasible interpolation. We extend the notion of feasible interpolation so that it is admitted by a number of treelike propositional proof syste...

متن کامل

A reduction of proof complexity to computational complexity for $AC^0[p]$ Frege systems

We give a general reduction of lengths-of-proofs lower bounds for constant depth Frege systems in DeMorgan language augmented by a connective counting modulo a prime p (the so called AC[p] Frege systems) to computational complexity lower bounds for search tasks involving search trees branching upon values of maps on the vector space of low degree polynomials over Fp. In 1988 Ajtai [2] proved th...

متن کامل

Some lower bounds for the $L$-intersection number of graphs

‎For a set of non-negative integers~$L$‎, ‎the $L$-intersection number of a graph is the smallest number~$l$ for which there is an assignment of subsets $A_v subseteq {1,dots‎, ‎l}$ to vertices $v$‎, ‎such that every two vertices $u,v$ are adjacent if and only if $|A_u cap A_v|in L$‎. ‎The bipartite $L$-intersection number is defined similarly when the conditions are considered only for the ver...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016